Add spike_finder/src/spike_finder/core.py
This commit is contained in:
parent
7fcf86c2f6
commit
65564e4e5b
1 changed files with 49 additions and 0 deletions
49
spike_finder/src/spike_finder/core.py
Normal file
49
spike_finder/src/spike_finder/core.py
Normal file
|
|
@ -0,0 +1,49 @@
|
||||||
|
import pandas as pd
|
||||||
|
from datetime import datetime
|
||||||
|
from typing import List, Dict, Any
|
||||||
|
|
||||||
|
|
||||||
|
def find_spikes(log_data: List[Dict[str, Any]], threshold: float) -> List[Dict[str, Any]]:
|
||||||
|
"""Analysiert Logdaten, um Spike-Events zu finden, deren Werte den Schwellenwert überschreiten.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
log_data: Liste von Logeinträgen mit mindestens 'timestamp' und 'value'.
|
||||||
|
threshold: Grenzwert, oberhalb dessen ein Wert als Spike gilt.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Liste von SpikeEvents (Dictionaries) mit Zeitpunkt, Wert und Kontextfenster.
|
||||||
|
"""
|
||||||
|
if not isinstance(log_data, list):
|
||||||
|
raise ValueError("log_data muss eine Liste von Dictionaries sein.")
|
||||||
|
if not all(isinstance(entry, dict) for entry in log_data):
|
||||||
|
raise ValueError("Jeder Logeintrag muss ein Dictionary sein.")
|
||||||
|
|
||||||
|
if not log_data:
|
||||||
|
return []
|
||||||
|
|
||||||
|
df = pd.DataFrame(log_data)
|
||||||
|
if 'timestamp' not in df.columns or 'value' not in df.columns:
|
||||||
|
raise ValueError("Erwartete Felder 'timestamp' und 'value' fehlen in den Logdaten.")
|
||||||
|
|
||||||
|
# Konvertiere Zeitstempel in datetime
|
||||||
|
df['timestamp'] = pd.to_datetime(df['timestamp'], errors='coerce')
|
||||||
|
df = df.dropna(subset=['timestamp', 'value'])
|
||||||
|
|
||||||
|
if df.empty:
|
||||||
|
return []
|
||||||
|
|
||||||
|
spikes = []
|
||||||
|
window_size = 2 # Kontextfenster: 2 Werte davor und danach
|
||||||
|
for i, row in df.iterrows():
|
||||||
|
if float(row['value']) > threshold:
|
||||||
|
start = max(0, i - window_size)
|
||||||
|
end = min(len(df), i + window_size + 1)
|
||||||
|
context_values = df.iloc[start:end]['value'].tolist()
|
||||||
|
spike_event = {
|
||||||
|
'timestamp': row['timestamp'].isoformat(),
|
||||||
|
'value': float(row['value']),
|
||||||
|
'context_window': [float(v) for v in context_values]
|
||||||
|
}
|
||||||
|
spikes.append(spike_event)
|
||||||
|
|
||||||
|
return spikes
|
||||||
Loading…
Reference in a new issue