Add latency_calculator/src/latency_calculator/cli.py

This commit is contained in:
Mika 2026-02-14 15:32:00 +00:00
parent 98cc6399b4
commit ed492a5e27

View file

@ -0,0 +1,95 @@
import argparse
import json
from pathlib import Path
from typing import Any, Dict, List
from datetime import datetime
import pandas as pd
from latency_calculator import core
class CLIError(Exception):
"""Custom exception for CLI-related errors."""
pass
def _parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Berechnet Latenzstatistiken aus JSONL-Dateien mit Zeitstempeln."
)
parser.add_argument("--input", required=True, help="Pfad zur JSONL-Datei mit Zeitstempeln")
parser.add_argument("--output", required=True, help="Pfad zur Ausgabedatei für Latenzstatistiken")
return parser.parse_args()
def _load_jsonl(file_path: Path) -> List[Dict[str, Any]]:
if not file_path.exists():
raise CLIError(f"Input file not found: {file_path}")
entries = []
with file_path.open("r", encoding="utf-8") as f:
for line in f:
if line.strip():
try:
entries.append(json.loads(line))
except json.JSONDecodeError as e:
raise CLIError(f"Invalid JSON line: {e}") from e
if not entries:
raise CLIError("Input file is empty or contains no valid entries.")
return entries
def _validate_entry(entry: Dict[str, Any]) -> bool:
required_fields = {"t_publish", "t_gate_read", "t_index_visible"}
if not required_fields.issubset(entry):
missing = required_fields - set(entry)
raise CLIError(f"Missing required fields: {', '.join(missing)}")
return True
def main() -> None:
args = _parse_args()
input_path = Path(args.input)
output_path = Path(args.output)
# Load and validate input
entries = _load_jsonl(input_path)
valid_entries = []
for e in entries:
_validate_entry(e)
valid_entries.append(e)
# Calculate latency statistics using core function
results = []
for entry in valid_entries:
stats = core.calculate_latency(entry)
results.append(stats)
# Aggregate results if multiple entries
df = pd.DataFrame(results)
aggregated = {
"p50": float(df["p50"].mean()),
"p95": float(df["p95"].mean()),
"max": float(df["max"].max())
}
# Ensure output directory exists
output_path.parent.mkdir(parents=True, exist_ok=True)
# Save to output file
with output_path.open("w", encoding="utf-8") as f:
json.dump(aggregated, f, indent=2)
# Basic CI-ready validation
assert set(aggregated.keys()) == {"p50", "p95", "max"}, "Output fields mismatch"
if __name__ == "__main__":
try:
main()
except CLIError as err:
print(f"Fehler: {err}")
exit(1)
except Exception as e:
print(f"Unerwarteter Fehler: {e}")
exit(2)